Studying Synaptic Vesicle Pools using Photoconversion of Styryl Dyes

نویسندگان

  • Felipe Opazo
  • Silvio O. Rizzoli
چکیده

The fusion of synaptic vesicles with the plasma membrane (exocytosis) is a required step in neurotransmitter release and neuronal communication. The vesicles are then retrieved from the plasma membrane (endocytosis) and grouped together with the general pool of vesicles within the nerve terminal, until they undergo a new exo- and endocytosis cycle (vesicle recycling). These processes have been studied using a variety of techniques such as electron microscopy, electrophysiology recordings, amperometry and capacitance measurements. Importantly, during the last two decades a number of fluorescently labeled markers emerged, allowing optical techniques to track vesicles in their recycling dynamics. One of the most commonly used markers is the styryl or FM dye; structurally, all FM dyes contain a hydrophilic head and a lipophilic tail connected through an aromatic ring and one or more double bonds (Fig. 1B). A classical FM dye experiment to label a pool of vesicles consists in bathing the preparation (Fig. 1Ai) with the dye during the stimulation of the nerve (electrically or with high K(+)). This induces vesicle recycling and the subsequent loading of the dye into recently endocytosed vesicles (Fig. 1A(i-iii;)). After loading the vesicles with dye, a second round of stimulation in a dye-free bath would trigger the FM release through exocytosis (Fig. 1A(iv-v;)), process that can be followed by monitoring the fluorescence intensity decrease (destaining). Although FM dyes have contributed greatly to the field of vesicle recycling, it is not possible to determine the exact localization or morphology of individual vesicles by using conventional fluorescence microscopy. For that reason, we explain here how FM dyes can also be used as endocytic markers using electron microscopy, through photoconversion. The photoconversion technique exploits the property of fluorescent dyes to generate reactive oxygen species under intense illumination. Fluorescently labeled preparations are submerged in a solution containing diaminobenzidine (DAB) and illuminated. Reactive species generated by the dye molecules oxidize the DAB, which forms a stable, insoluble precipitate that has a dark appearance and can be easily distinguished in electron microscopy. As DAB is only oxidized in the immediate vicinity of fluorescent molecules (as the reactive oxygen species are short-lived), the technique ensures that only fluorescently labeled structures are going to contain the electron-dense precipitate. The technique thus allows the study of the exact location and morphology of actively recycling organelles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission

Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable po...

متن کامل

Novel pH-Sensitive Lipid Based Exo-Endocytosis Tracers Reveal Fast Intermixing of Synaptic Vesicle Pools

Styryl dyes and genetically encoded pH-sensitive fluorescent proteins like pHluorin are well-established tools for the optical analysis of synaptic vesicle (SV) recycling at presynaptic boutons. Here, we describe the development of a new class of fluorescent probes based on pH-sensitive organic dyes covalently bound to lipids, providing a promising complementary assay to genetically encoded flu...

متن کامل

Kainate modulates presynaptic GABA release from two vesicle pools.

Inhibitory control of local neuronal circuits is critical for prefrontal cortical functioning. Modulation of inhibitory circuits by several neuromodulators has been demonstrated, but the underlying mechanisms are unclear. Neuromodulator effects on synaptic vesicle recycling have received little attention. Controversy also exists whether different pools of synaptic vesicles underlie spontaneous ...

متن کامل

Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons

Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship,...

متن کامل

Sustained synaptic-vesicle recycling by bulk endocytosis contributes to the maintenance of high-rate neurotransmitter release stimulated by glycerotoxin.

Glycerotoxin (GLTx), a large neurotoxin isolated from the venom of the sea worm Glycera convoluta, promotes a long-lasting increase in spontaneous neurotransmitter release at the peripheral and central synapses by selective activation of Ca(v)2.2 channels. We found that GLTx stimulates the very high frequency, long-lasting (more than 10 hours) spontaneous release of acetylcholine by promoting n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 255  شماره 

صفحات  -

تاریخ انتشار 2010